
domain. The inverse transform reverses the process, con-
verting frequency data into time-domain data. Such trans-
formations can be applied in a wide variety of fields, from
geophysics to astronomy, from the analysis of sound signals
to CO2 concentrations in the atmosphere. Over the course
of three articles, our goal is to provide a convenient sum-
mary that the experimental practitioner will find useful. In
the first two parts of this article, we’ll discuss concepts as-
sociated with the fast Fourier transform (FFT), an imple-
mentation of the DFT. In the third part, we’ll analyze two
applications: a bat chirp and atmospheric sea-level pressure
differences in the Pacific Ocean. 

The FFT provides an efficient algorithm for implement-
ing the DFT and, as such, we’ll focus on it. This transform
is easily executed; indeed, almost every available mathe-
matical software package includes it as a built-in function.
Some books are devoted solely to the FFT,1–3 while others
on signal processing,4–6 time series,7, 8 or numerical meth-
ods9,10 include major sections on Fourier analysis and the
FFT. We draw together here some of the basic elements
that users need to apply and interpret the FFT and its in-
verse (IFFT). We will avoid descriptions of the Fourier ma-
trix, which lies at the heart of the DFT process,11 and the
parsing of the Cooley-Tukey algorithm12 (or any of several
other comparable algorithms), which provides a means for
transforming the discrete into the fast Fourier transform. 

The Cooley-Tukey algorithm makes the FFT extremely
useful by reducing the number of computations from some-
thing on the order of n2 to n log(n), which obviously pro-
vides an enormous reduction in computation time. It’s so
useful, in fact, that the FFT made Computing in Science &
Engineering’s list of the top 10 algorithms in an article that
noted the algorithm is, “perhaps, the most ubiquitous algo-

rithm in use today.”13 The interlaced decomposition
method used in the Cooley-Tukey algorithm can be applied
to other orthogonal transformations such as the Hadamard,
Hartley, and Haar. However, in this article, we concentrate
on the FFT’s application and interpretation. 

Fundamental Elements
As a rule, data to be transformed consists of N uniformly
spaced points xj = x(tj), where N = 2n with n an integer, and tj
= j � �t where j ranges from 0 to N – 1. (Some FFT imple-
mentations don’t require that N be a power of 2. This num-
ber of points is, however, optimal for the algorithm’s
execution speed.) Even though any given data set is unlikely
to have the number of its data points precisely equal to 2n, zero
padding (which we describe in more detail in the next section)
provides a means to achieve this number of samples without
losing information. As an additional restriction, we limit our
discussions to real valued time series as most data streams are
real. When the time-domain data are real, the values of the
amplitude or power spectra at any negative frequency are the
same as those at the corresponding positive frequency. Thus,
if the time series is real, one half of the 2n frequencies contain
all the frequency information. In typical representations, the
frequency domain contains N/2 + 1 samples. 

The FFT’s kernel is a sum of complex exponentials. As-
sociated with this process are conventions for normaliza-
tion, sign, and range. Here, we present what we consider to
be good practice, but our choices are not universal. Users
should always check the conventions of their particular soft-
ware choice so they can properly interpret the computed
transforms and related spectra.

Equation 1 shows some simple relationships between pa-
rameters such as �t, the sampling time interval; �f, the spac-
ing in the frequency domain; N, the number of samples in
the time domain; and fj, the Fourier frequencies. The num-
ber of samples per cycle (spc) for a particular frequency
component with period T in the time domain and (in some
cases) the total number of cycles (nc) in the data record for
a particular frequency component are two other pieces of
information that are useful because they remind us of the
adequacy of the sampling rate or the data sample. Some re-
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lations between these parameters are 

�f = and fj = j · �f,

where j = 0, ..., N/2

spc = , nc = = = . (1)

The period T represents only one frequency, but, as we
discuss later, there must be more than 2 spc for the highest
frequency component of the sampled signal. This band-
width-limiting frequency is called the Nyquist frequency and
is equal to half the sampling frequency. The spacing in the
frequency domain �f is the inverse of the total time sampled,
so time and frequency resolution can’t both be simultane-
ously improved. Thus, the maximum frequency represented
is �f · N/2 = 1/(2 · �t), or the Nyquist frequency. 

We can express the transform in several ways. A com-
monly used form is the following (with i = ):

, k = –N/2, …, –1, 0, 1, …,

N/2 – 1, (2)

where xj represents the time-domain data and Xk their rep-
resentation in the frequency domain. 

We express the IFFT as

, j = 0, 1, …, N – 1. (3)

The FFT replicates periodically on the frequency axis with
a period of 1/�t; consequently, X(fN/2) = X(f–N/2) so that the
transform is defined at both ends of the closed interval from
–1/(2�t) to + 1/(2�t). This interval is sometimes called the
Nyquist band.

Some FFT and IFFT implementations use different nor-
malizations or sign conventions. For example, some imple-
mentations place the factor 1/N in the FFT conversion
rather than with the IFFT. Some place 1/ in both con-
version processes, and some reverse the signs in the expo-
nentials of the transforms; this sign change reverses the sign
of the phase component. Moreover, some implementations
take the range for k from 0, …, N/2. 

Because Equations 2 and 3 represent the frequency and
time domains of the same signal, the energy in the two cases
must be the same. Parseval’s relation expresses this equality.

For real data, we can express the relation as

, (4)

where X = fft(x). The last term on the right-hand side is not
usually separated from the sum as it is here; we do this be-
cause there should be only N terms to consider in both sum-
mations, not N in one and N + 1 in the other. Recall that be-
cause we’re dealing with real valued data, we can exploit a
symmetry and present the frequency data only from 0 to
N/2; this symmetry is the source of the factor of two associ-
ated with the summation. Unlike the other terms, the +N/2
frequency value isn’t independent and was assigned, as noted
earlier, to the value at –N/2. Should the +N/2 term be in-
cluded in the sum, we would, in effect, double count the
term, so we pull the N/2 term from the sum to avoid this. Of
course, if N is large, this difference is likely to be minimal.

There are two common ways to display an FFT. One is
the amplitude spectrum, which presents the magnitudes of
the FFT’s complex values as a function of frequency:

, k = –N/2, …, –1, 0, 1, …, N/2. (5)

Given the symmetry of real time series, the standard presen-
tation restricts the range of k to positive values: k = 0, 1, …,
N/2. An equally common way to represent the transform is
with a power spectrum (or periodogram), which is defined as

,  k = 0, 1, …, N/2. (6)

However, neither of these spectral representations is uni-
versal. For example, some conventions place a 1 in the nu-
merator instead of a 2 for the amplitude spectrum. The pe-
riodogram is sometimes represented with a factor of 2 in the
numerator instead of 1 or as the individual terms expressed
in Parseval’s relation (Equation 4). 

In Figure 1, as an example of the FFT process, we show
the amplitude spectrum of a single-frequency sine wave with
two different sampling intervals. In one case, the interval �t
is chosen to make nc integral, and in the other, nonintegral.
If nc is integral, f is necessarily a multiple of �f, and one
point of the transform is associated with the true frequency
(see the circles in Figure 1a). However, in any FFT applica-
tion, we’re dealing with a finite-length time series. The
process of restricting the data in the time domain (multi-
plying the data by one over the range where we wish to keep
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the data and multiplying by zero elsewhere—an example of
windowing, discussed later) introduces sidelobes in the fre-
quency domain. These sidelobes are called leakage.

Even though there’s leakage, because there’s only one fre-
quency associated with the transformed sine wave, we might
expect to be able to estimate that frequency with a weighted
average of all the points in the frequency domain. Such an
average, however, wouldn’t yield the correct frequency.

In general, the FFT process generates complex values in
the frequency domain from the real values in the time do-
main. If we transform sine or cosine waves where we consider
an integral number of cycles, the transform magnitudes are
identical.  However, in the frequency domain, a sine curve is
represented only with imaginary values and a cosine curve
only with real values. When the number of cycles is noninte-
gral or if there is a phase shift, then both real and imaginary
parts appear in the transform of both the sine and cosine. 

Zero Padding 
Zero padding is a commonly used technique associated with
FFTs. Two frequent uses are to make the number of data
points in the time-domain sample a power of two and to im-
prove interpolation in the transformed domain (for exam-
ple, zero pad in the time domain, improve interpolation in
the frequency domain).

Zero padding, as the name implies, means appending a
string of zeros to the data. It doesn’t make any difference if
the zeros are appended at the end (the typical procedure), at

the beginning, or split between the beginning and end of the
data set’s time domain. One very common use of this process
is to extend time-series data so that the number of samples
becomes a power of two, making the conversion process
more efficient or, with some software, simply possible. Be-
cause the spacing of data in the frequency domain is in-
versely proportional to the number of samples in the time
domain, by increasing the number of samples—even if their
values are zero—the resulting frequency spectrum will con-
tain more data points for the same frequency range. Conse-
quently, the zero-padded transform contains more data
points than the unpadded; as a result, the overall process acts
as a frequency interpolating function. The resulting, more
detailed picture in the frequency space might indicate un-
expected detail (see, for example, Figure 2). As the number
of zeros increases, the FFT better represents the time series’
continuous  Fourier transform (CFT).

As we noted earlier, zero padding introduces more points
into the same frequency range and provides interpolation
between points associated with the unpadded case. When
data points are more closely spaced, clearly, there’s a possi-
bility that unnoticed detail could be revealed (such as Fig-
ure 1a shows). In Figure 2, we see the effect of quadrupling
the number of points for two different cases. The transforms
of the zero-padded data contain the same information as the
unpadded data, and every fourth point of the padded data
matches the corresponding unpadded data point. The in-
termediate points provide interpolation.

E D U C A T I O N
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Figure 1.  Amplitude spectra of a single-frequency sine wave. Two representations of a sine wave of frequency 0.5 are shown in each
part of the figure. In each case, the circles are based on a time series where the number of sample points N = 32 but the time step is
slightly different: (a) N�t = 8, so nc = 4; (b) N�t = 7.04, so nc = 3.52, where nc is the total number of cycles. The solid lines provide a
view of these same spectra with zero padding. This form is closer to what would be expected from a continuous rather than a
discrete Fourier transform. The zero-padded examples reveal detail that might not have been expected, given the appearance of the
unpadded case.
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In Figure 2, we see an application of that interpolating
ability when we consider a signal consisting of two closely
lying frequencies.  In Figure 2a, although the envelope is
more clearly drawn, zero padding does not have the power
to resolve the two frequencies associated with this case. In
Figure 2b, the peaks are sufficiently separated so that the in-
terpolation reveals the two peaks, whereas the unpadded
data seemingly did not. This example reminds us that a
graphical representation connecting adjacent data points
with straight lines can be misleading.

Zero padding can also be performed in the frequency
domain. The inverse transform results in an increase in the
number of data points in the time domain, which could be
useful in interpolating between samples (see Figure 3).
Zero padding is also used in association with convolution
or correlation and with filter kernels, which we discuss
later in this article. 

Aliasing
When performing an FFT, it’s necessary to be aware of the
frequency range composing the signal so that we sample the
signal more than twice per cycle of the highest frequency as-
sociated with the signal. In practice, this might mean filtering
the signals to block any signal components with a frequency
above the Nyquist frequency (2 · �tsample)–1 before perform-
ing a transform. If we don’t restrict the signal in this way,
higher frequencies will not be adequately sampled and will
masquerade as lower-frequency signals. This effect is similar
to what moviegoers experience when the onscreen wheels of
a moving vehicle seemingly freeze or rotate in the wrong di-
rection. The camera, which operates at the sampling rate of

24 frames per second, only has a Nyquist limit of 12 Hz; any
higher frequencies present will appear as lower frequencies.

Let’s assume that we can readily observe a point on a wheel
(not at the center) that’s rotating but not translating. At a slow
rotation rate, each successive frame of our film shows the ob-
servable point advancing from the previous frame. (The frac-
tion of a complete rotation and the sampling rate are related;
the number of samples per rotation is the inverse of the frac-
tion of a rotation per sample.) As the rotation rate increases,
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Figure 2. The effect of zero padding on the transform of a signal containing two different frequencies. We look at two cases: one in
which the two frequencies are too close to be clearly resolved, and one in which resolution is possible. (a) Fast Fourier transforms
(FFTs) of the sum of two sine waves of amplitude 1 and frequencies of 1 and 1.3 Hz; the frequencies aren’t resolved, and (b) FFTs of
the sum of two sine waves of amplitude 1 and frequencies of 1 and 1.35 Hz; the frequencies are resolved. The solid curves are
transforms of zero-padded data and include four times as many samples as the transforms of the unpadded data (dotted curves).
Because the zero-padded curve has four times as many data points as the unpadded case (N = 32), every fourth point of the zero-
padded data is the same as the unpadded data. Zero-padded results provide better interpolation and more detail.
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Figure 3. The effect of zero padding in the frequency domain
on the time-domain data. The frequency data (the unpadded
case in Figure 2a) was zero-padded to four times its original
length. We show the original unpadded time-domain data
(boxes) and the inverse fast Fourier transform of the zero-
padded frequency data (dots). The padding process again acts
as an interpolation function.
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E D U C A T I O N

the angle between our observed point in successive frames in-
creases. When the angle reaches 180 degrees, or two samples
per rotation, the perceived rotation rate is at its maximum—
the wheel is rotating at the Nyquist frequency. 

When passing through the Nyquist limit, as the frequency
goes from fNy – � to fNy + � (where � << fNy), the rotation di-
rection appears to change from forward to reverse while the
rotation rate remains the same. Further increases in the ro-
tation rate make the wheel appear to continue rotating in a
reversed direction but at a decreasing rate. When the actual
rotation rate is twice the Nyquist frequency, the apparent
rotation rate is zero and the sampling rate is just once per
rotation. (Another example of one sample per rotation and
an apparent zero rotation rate is to use a stroboscope to de-
termine an object’s rotation rate. With one flash per rota-
tion, the rotating object appears at rest and the flash rate and
rotation rate are equal.) If the frequency of rotation contin-
ues to increase, the wheel will again appear to rotate in the
original rotation direction.

To make this more concrete, consider two constant rota-
tion rates, one of 170degrees between successive frames/sam-

ples and one of 190 degrees. We observe only the current po-
sition in each frame, so as we compute a value sequence, we
take them mod(360). If we compute values for the 170-de-
gree case, we obtain 0, 170, 340, 150, 320, 130, and so on. If
we compute values for the 190-degree case, we get 0, 190,
20, 210, 40, 230, and so on, but we wouldn’t see the 190-
degree rotation. We don’t observe an increase greater than
180 degrees (for angles greater than that, the data is under-
sampled). For the 190-degree case, we would see a 170-
degree step, but with the rotation in the opposite direction.

To consider a reverse rotation, we subtract the forward
rotation angle from 360. The result is the magnitude of the
angle of rotation in the reverse direction. For example, a
forward rotation angle of 350 degrees is equivalent to a 10-
degree step in the reverse direction.  So for our 190-degree
case, the numbers become 0, 360 – 190 = 170, 360 – 20 =
340, 360 – 210 = 150, and so on. Table 1 provides a sum-
mary. The magnitudes of these rotation angles are identi-

cal to the 170-degree data. Thus, we would see the 190-
degree case as equivalent to the 170-degree case in terms of
rotation rate, but with the rotation direction reversed. The
graph in Figure 4 helps demonstrate this kind of behavior.

In the example shown in Figure 4, the Nyquist frequency
is 8 Hz. Frequencies associated with the first leg of the saw-
tooth curve have more than two samples per cycle, and the
apparent and actual frequencies are equal. Once the actual
frequency exceeds the Nyquist frequency, the apparent fre-
quency begins to decrease, with the negative slope corre-
sponding to a reversed rotation direction. At 16 Hz, with
one sample per rotation, the apparent frequency is zero.
With further increases in the true frequency, the apparent
frequency once again increases. 

If we take the FFT of three amplitude 1 cosine waves hav-
ing frequencies of 3.5, 12.5, and 19.5 Hz and where we set
N = 16 and �t = 1/N (so the Nyquist frequency is 8 Hz), we
get identical FFTs, one of which is shown in Figure 5. The
number of samples per cycle for these frequencies is 4.57,
1.28, and 0.82. Only the lowest frequency is adequately rep-
resented; the two higher-frequency cases have fewer than

Table 1. Actual and apparent angles for 170o and 190o rotations.

Angle sequence for 170� step Angle sequence for 190� step Apparent angle 
sequence for 1900 steps with 
rotation direction reversed.*

0 0 0
170 190 170
340 20 340
150 210 150
320 40 320
130 230 130

*Magnitudes of reverse angles are given by 360� – column 2.
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Figure 4. Apparent frequency as a function of the true
frequency. Frequencies greater than the Nyquist frequency fold
back into the allowed frequency range and appear as lower
frequencies. In this example, where the Nyquist frequency is 8
Hz, an actual frequency of 9 Hz would appear as 7 Hz.
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two samples per cycle and consequently masquerade as
lower frequencies, appearing in the allowed range between
0 Hz and the Nyquist frequency. For the example with the
three different frequencies, we purposely selected the higher
frequencies so that their FFTs would be identical to that of
the lowest frequency. Referring to Figure 4, we note that the
frequencies 12.5 and 19.5 Hz would appear on the second
and third legs of the sawtooth curve. The apparent
frequency of the 12.5-Hz line is 8 – (12.5 – 8); the apparent
frequency of the 19.5-line is 19.5 – 2 � 8. In general, the out-
of-range frequency ftrue would appear as fapparent as given by 

, (7)

where k = 1, 2, …, and k is selected to bring fapparent within
the range 0 … fNy.

In Figure 6, we see the actual curves that correspond to
the three frequencies and the points where sampling occurs.
If we performed an FFT followed by an IFFT for any one
of the three curves (given the sampling specified), the algo-
rithm would return the same result in each case, which,
without other information, would be interpreted as the
lowest-frequency case.

If the magnitudes of the Fourier coefficients approach
zero (roughly as 1/f ) as the frequency approaches the
Nyquist frequency (a zero between lobes would not qualify),
then there is a good likelihood that aliasing has not occurred.
If it isn’t zero, we can consider the possibility that it has oc-
curred. However, a nonzero value doesn’t imply that alias-
ing has necessarily happened. The Fourier coefficients in
Figure 5 don’t go to zero even in the adequately sampled
case. Zero padding of this example will show a great deal
more detail, but the transform is still nonzero at the Nyquist
frequency.

Relation to Fourier Series 
There is a direct connection between the real and imaginary
parts of the frequency information from an FFT and the co-
efficients in a Fourier series that would represent the corre-
sponding time-domain signal. As we noted earlier, for the
conditions stated, the transform of a single-frequency sine
wave is imaginary, whereas the transform of a single-
frequency cosine wave is real. So, in a Fourier series of the
time-domain signal, we would expect the real parts of the fre-
quency information to be associated with cosine series and
the imaginary parts with sine series. This is, in fact, the case.

An equation for recreating the original signal as a Fourier

series from the frequency information is

. (8)

For the case N = 2n, ak represents the real part of the trans-
formed signal, bk the imaginary part, nt the number of terms
to be included in the series (where nt < N/2), and �f the spac-
ing in the frequency domain. 

An alternate form in terms of magnitude and phase is also
possible. Given that

, (9)

where hk = ak +ibk and the Hj are the magnitudes of hj, the
series is given by
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Figure 5. The FFT of a 3.5 Hz, amplitude one cosine wave
where N = 16 and �t = 1/N (represented by circles). The FFTs
of the frequencies 3.5 Hz, 12.5 Hz, and 19.5 Hz are identical
for the case when the Nyquist frequency is 8 Hz. The solid
curve shows the transform with zero padding.
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Figure 6. A view of the sampling of three cosine curves. Cosine
curves with frequencies 3.5 Hz, 12.5 Hz, and 19.5 Hz are
shown, with the marked points representing those at which
sampling occurs (�t = 1/N and N=16). Only the lowest-
frequency curve is adequately sampled, with more than two
samples per cycle. In this case, the FFT for each curve would
indicate a signal with a frequency of 3.5 Hz. For clarity, we
show only the first five samples.
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. (10)

In Figure 7, we see the square wave signal (one cycle of a
square wave that ranges between 0 and 1 with equal times
high and low) to be transformed as well as the signal con-
structed from the first 10 terms of a Fourier series using the
coefficients from the FFT as per Equation 8. We would ob-
tain an identical waveform if we took the IFFT of a trunca-
tion of the original FFT, where all the FFT’s coefficients

with an index greater than the number of desired terms
(here, nt = 10) are set to zero.

Windows
Windows are useful for extracting and/or smoothing data.
A window is typically a positive, smooth symmetric function
that has a value of one at its maximum and approaches zero
at the extremes. (A window might have a discontinuity in its
first derivative, giving it an inverted V shape—such a win-
dow is sometimes referred to as a “tent”—or two disconti-
nuities for a rectangular or trapezoidal shape.) We apply
windows by multiplying time-domain data by the window
function. Of course, whenever a window is applied, it alters
at least some of the data. 

Smoothing windows, for example, reduce the amplitude
of the time-domain data at both the beginning and the end
of the windowed data set. One effect of this smoothing is to
reduce leakage in the frequency domain. In Figure 8, we
show comparative plots of four frequently used windows.
We show the effect of applying three of those windows to a
sine wave sequence in Figure 9.

Let’s look at the expressions for four common windows: 

Rectangular:

Hamming: hamwi = 0.54 – 0.46 � cos(2 � � � i/N)
Hann: hanwi = 0.5 – 0.5 � cos(2 � � � i/N)
Blackman: blkwi = 0.42 – 0.5 � cos(2 � � � i/N) + 0.08 �

cos(4 � � � i/N). (11)

The Hamming and Hann windows differ in only one pa-
rameter: if the corresponding coefficients are written � – (1
– �), then � is 0.54 for the Hamming window and 0.5 for the
Hann. The fact that a slight change in the parameter value
gives rise to two different windows hints at the sensitivity of
the windowing process to the value of �.  If � decreases from
0.5, the side lobes increase significantly in amplitude. As �
increases from 0.5 to 0.54, the relative sizes of the side lobes
change. The first set of the Hann side lobes tend to be sig-
nificantly larger than those of the Hamming case, but sub-
sequent Hann side lobes decrease rapidly in magnitude and
become significantly smaller than the Hamming side lobes.
As to general appearance, the Hamming window doesn’t
quite go to zero at the window’s endpoints whereas the Rec-
tangular, Hann, and Blackman windows do. Several other
windows also exist, including Bartlett (tent function), Welch
(parabolic), Parzen (piece-wise cubic), Lanczos (central lobe
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Figure 7. A comparison of the original time-domain signal
and its partial reconstruction as a Fourier series. The original
signal (dotted curve) and the first 10 terms of a Fourier series
(solid curve) computed using coefficients from the original
signal’s FFT.
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Figure 8. The shapes of four different windows.  From the
side, we see a rectangular (red), Hamming (blue), Hann
(green), and Blackman (magenta), respectively. We’ll apply
three of these windows to a sine wave sequence in Figure 9.
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of a sine function), Gaussian, and Kaiser (which uses a mod-
ified Bessel function). 

Each of these windows has particular characteristics. Two
particularly useful points of comparison in the frequency space
are the full width at half maximum of the central peak and the
relative magnitude of central peak to that of the side lobes. An
unwindowed signal’s FFT has the narrowest central peak, but
it also has considerable leakage that decays slowly. The curves
for the Hamming and Blackman cases show wider central
peaks but significantly smaller side lobes. The Blackman win-
dow has the largest peak height to first sidelobe height ratio. 

There is no final summary statement that says you should
use window x in all cases—circumstances decide that. In the
bat-chirp analysis we’ll examine in part two of this series,
we’ll use an isosceles trapezoidal window. Such a window isn’t
generally recommended, but for the bat-chirp case, it’s the
best choice. (A split cosine bell curve, a Hann window shape
for the beginning and end of the curve with a magnitude of
one in the interior, would give essentially the same results.) 

As an example of windowing’s effect on the transform, we
apply a Blackman window to the time-domain data associ-
ated with Figure 1b. Two effects of applying this window, as
Figure 10 shows, are that the leakage is greatly reduced and
that the central peak is broadened.  Obtaining the needed
detail to observe these features requires zero padding.  

I n part two of this series, we’ll discuss auto-regression
spectral analysis and the maximum entropy method, con-

volution, and filtering. In the third and final installment,
we’ll present some applications, including the analysis of a
bat chirp and atmospheric sea-level pressure variations in
the Pacific Ocean. 

Whether there is an interest in CO2 concentrations in the
atmosphere, ozone levels, sunspot numbers, variable star
magnitudes, the price of pork, or financial markets, or if the
interest is in filtering, correlations, or convolutions, Fourier
transforms provide a very powerful and, for many, an essen-
tial algorithmic tool.
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Figure 9. A comparison of the effects (from left to right) of a
rectangular, a Hamming, and a Blackman window on a sine
wave sequence. For convenience of display, we compute the
three examples separately, shift the second and third in time,
and sum the set, with the effect that the three examples
appear sequentially in time; because each example is zero
outside its window zone, the results do not interfere. The
three windows have the same width, but as Figure 8 shows,
the Blackman window increases in magnitude more slowly
than the others, and we can observe the effect on the sine
wave signal. The difference between Hamming and Blackman
windowing is also evident. 
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Figure 10. The effects of windowing as seen in the transform
space. The FFT of the 3.52-cycle example in Figure 1 and the
result of multiplying time-domain data and a Blackman
window before taking the FFT are shown without zero padding
(circles) and with zero padding (solid curves). The windowed
form reduces leakage but has a broader central lobe.
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seems so simple and transparent: the software takes care of
the computations, and it’s easy to create the plots. But once
they start probing, students quickly learn that like any rich
scientific expression, the implications, the range of applica-
bility, and the associated multilevel understandings needed
to fully appreciate the subtleties involved take them far be-
yond the basics. Even professionals find surprises when per-
forming such computations, becoming aware of details that
they might not have fully appreciated until they asked more
sophisticated questions.

In the first of this five-part series,1 we discussed several
basic properties of the FFT. In addition to some funda-
mental elements, we treated zero-padding, aliasing, and the
relationship to a Fourier series, and ended with an intro-
duction to windowing. In this article, we’ll briefly look at
the convolution process.

Convolution
Convolution, a process some would say lies at the heart of
digital signal processing, involves two functions, which we’ll
call x(t) and h(t), where x(t), for example, could be an input
signal and h(t) some linear system’s impulse response. When
convolved, �, they yield an output function y(t). The
process expresses the amount of one function’s overlap as it
is shifted over the other, providing a kind of blending of the
two functions:

y(t) = x(t) � h(t). (1)

This process has many applications. Filtering is one exam-
ple: given the appropriate impulse response, we can create
any one of a number of filters. We’ll give some examples in
the next section, but we’ll postpone further information

about filtering and detrending until the next installment.
Correlation is another closely related process and can help
determine if a particular signal occurs in another datastream. 

Deconvolution is the reverse: in effect, it uses the
process itself to remove the effects of an undesired convo-
lution or data distortion. When taking data, a convolution
can obscure the desired information, perhaps due to in-
terfering physical interactions or by the detection system
itself (which has its own response). A gamma ray arriving
at a detector, for example, has a well-defined energy, yet
the detector output shows several associated effects related
to the interaction of the gamma ray with a crystal. If a nu-
clear physicist is interested in the gamma ray’s energy or
intensity instead of the detector’s response, then he or she
needs to know how to extract the appropriate information
from this much larger signal set. Deconvolving can remove
the detector response, restoring the data to a form closer
to the original.

When noise accompanies a signal, as it always does to
some extent, a direct deconvolution can generate unstable
results, which renders the process unusable. One way to re-
duce the noise’s influence is to assume that analytic func-
tions can represent either (or both) the original signal and
the convoluted signal. When such a representation is pos-
sible, the chances of success with the deconvolution process
greatly improve. Still, deconvolution is beyond the scope of
this series, so we won’t discuss it here.

The continuous convolution is defined as

y(t) = x(t) � h(t) 

= x(�)h(t – �)d� = x(t – �)h(�)d�. (2)

In his book on the FFT, E. Oran Brigham states that “Pos-
sibly the most important and powerful tool in modern sci-
entific analysis is the relationship between [Equation 2] and
its Fourier transform.”2 The relationship referred to is the
time–convolution theorem:

F{x(t) � h(t)} = F{x(t)} � F{h(t)} = X(f )H(f ), (3)

∫
−∞

∞
∫

−∞

∞
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where � denotes ordinary multiplication, and X( f ) and
H( f ) are the continuous Fourier transforms of x(t) and
h(t). 

In real life, we seldom have access to the functions x(t) and
h(t); instead, we have only finite time-series representations,
such as

xk = x(k � �t)

and

hk = h(k � �t), k = 0, 1, 2, …, N – 1. (4)

Given this discrete representation, we can’t compute y(t) ex-
actly, but we can compute a time-series approximation to it.
Specifically, we can write an expression for the discrete con-
volution as

n = 0, 1, 2, …, N – 1. (5)

If the response function were the trivial example in which
h0 has the value 1 and all other h values are 0, then the con-
volution process would just reproduce the input signal (if h0
differed from 1, it would scale the input signal proportion-
ally to h0). If all h’s were 0 except for hm, then we would scale
the input signal by the magnitude of hm and delay it by m
sample intervals. The convolution process is the summation
of such elements.

It’s important to keep two details in mind when per-
forming a convolution process: one, the two signals must
have the same number of elements (zero-padding easily
solves this problem), and two, the discrete convolution
theorem treats the data as if it were periodic. We can ex-
press the summation associated with this circular convolu-
tion as

. (6)

This cyclic effect causes a wraparound problem that we’ll
explain in more detail later.

The FFT form of the convolution of two time series is
given by

x � h = ifft(fft(x) � fft(h)), (7)

where the product of the two transforms is element by el-
ement and ifft stands for inverse FFT. (While we’re dis-
cussing convolution in the time domain and multiplication
in the frequency domain, we should mention that an in-
terchange of roles is also possible. Multiplication in the
time domain corresponds to convolution in the frequency
domain.)

We can readily program the summation required to com-
pute a convolution: as the number of data points increases,
the computational advantage goes to the convolution’s im-
plementation with FFT, even though it requires several
steps. The reason is that a convolution in the time domain
requires N 2 multiplications whereas the computational cost
of taking the FFT route is on the order of 3N log2(N) mul-
tiplications. Despite the fact that three steps are involved,
for large N, the advantages of the FFT approach are unmis-
takable. Even for the very modest case of N = 250, using
FFTs to compute a convolution is already more than 10
times faster than the time-domain computation.

One way to implement the summation shown in Equation
6 is by expressing the equation itself in matrix form. Create
an N � N matrix in which the first column takes on the x-
values from x0 to xN–1. Let the next column take on the same
x-values but shifted down one row, with the last value be-
coming the first, and repeat this rolling procedure for each
successive column. Multiplying this x-matrix by the h-vector
yields a circular convolution. We get a linear convolution from
this same multiplication if we set all the terms in the x-matrix
above the diagonal to zero.

To avoid the wraparound pitfall, we could do one of two
things: compute the linear convolution (setting all elements
above the x-matrix’s diagonal to zero) or zero-pad the func-
tions so that the total number of data points is at least N0 +
K0 – 1, where N0 and K0 are the original numbers of data
points in the functions x and h. With this number of ele-
ments, we avoid any distortion due to wraparound:

.(8)

Examples
As an example of a linear convolution calculation, consider
the signals
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(9)

and

(10)

which we discretize to have 32 equally spaced points on the
interval [0,1].

Figure 1 shows the signal, the impulse response, and the

associated continuous and discrete convolutions. The dis-
crete convolution as computed by taking the IFFT of the
product of the FFTs of x and h is identical to that obtained
via matrix multiplication.

Figure 2 shows the wraparound associated with the circu-
lar convolution example. The convolution is altered for the
number of nonzero data points in h. 

In Figure 3, we show the FFTs of the linear and circular
convolutions. The FFT of the convolution resulting from
the matrix multiplication is the same as the product of x and
h’s FFTs. In the figure, we can see some frequency depen-
dence associated with the convolution process. Figure 4 gives
an overall summary of the operations and their interrelation.

For a more realistic example of convolution, let’s look at
the propagation of an acoustic pressure wave through a rec-
tangular waveguide. The waveguide’s resonant conditions
restrict the wave numbers of the transverse wave compo-
nents to discrete values, and the wave propagates only in cer-
tain modes. If we treat the waveguide as a linear device with
an impulse response h, then we can predict the form of the
transmitted signal by taking the convolution of our input
signal x and the impulse response of the waveguide. Kristien
Meykens and colleagues3 show that for modes other than (0,
0), the impulse response departs from a �-function in which
the lower frequencies resemble a reversed chirp.

Figure 5 shows the convolution of an input signal consist-
ing of a brief acoustic burst with the impulse response of a rec-
tangular waveguide (which we represent as a chirp function).
We form this input signal by multiplying an 8-kHz sine wave
by a Bartlett (tent-shaped) window. The chirp function repre-
sents the impulse response for the waveguide’s (1, 0) mode, and
f(t) = 103 + 2 � 106t represents the chirp function’s frequency
dependence. The chirp expression is simply sin(�(t)), where

. (11)

I n general, a convolution shows the two functions’ entan-
glement. The examples we’ve discussed here provide a

clear instance in which we can see where the similarity be-
tween the input signal and the impulse response is the great-
est. Such computations are in reasonable agreement with ex-
perimental results.3

In the next installment of this series, we’ll continue to ex-
amine the problem of spectrum estimation with a discussion
of the autocorrelation function and the correlogram esti-
mates, which are based upon it.
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Figure 1. Comparison of continuous and discrete convolution
calculations. We calculated the convolution of x(t) and h(t) in
three ways: continuous and discrete in the time and frequency
domains. The discrete convolution calculations approach the
continuous form.

A
m

p
lit

uu
de

0.0 0.2 0.4 0.6 0.8 1.0
–0.4

–0.2

0

0.2

0.4

Time

Figure 2. Convolution with and without wraparound
distortions. The blue curve shows the circular form of the
convolution without zero-padding. The red curve is based on a
zero-padded calculation that avoids the distortion associated
with circularity. The diamonds show the h response curve
(scaled at 10 percent of true height); the width of the
response function is associated with the region in which the
circular convolution is spoiled.
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Figure 5.  The convolution of a windowed sine wave burst and
a chirp function. The top curve shows the input signal, and the
middle curves show the impulse response of the waveguide (a
chirp function). The chirp frequency increases linearly with
time, ranging from roughly 1 kHz at t = 0 to roughly 17 kHz at
t = 8 ms; the frequency increases at a rate of approximately 2
kHz/ms. The bottom curves show the convolution and the
approximate frequencies associated with the most significant
section of the convolution over time. The one marked point
represents the frequency of the windowed sine curve which is
8 kHz. The slope of the line representing frequency is about
1.9 kHz/ms.                                
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Figure 3. The FFTs of the linear and circular convolutions. The
two curves are shown with (solid curves) and without (circles
and diamonds) zero padding. We computed these FFTs from
the convolution data for Figure 1’s discrete transform. The
results are the same as those obtained by taking the product
of x and h’s FFTs.
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Figure 4. The interrelation between time and frequency
domain operations that lead to convolution. Multiplying the
FFT’s of x and h followed by an IFFT also lead to the
convolution. An FFT of the convolution would yield the same
result as the product of the FFTs.
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spectrum estimation problem. Before
we begin, here’s a short refresher
about two elements we introduced
previously, windowing1 and convolu-
tion.2 As we noted in those install-
ments, a convolution is an integral
that expresses the amount of overlap
of one function as it is shifted over an-
other. The result is a blending of the
two functions. Closely related to the
convolution process are the processes
of cross-correlation and autocorrela-
tion. Computing the cross-correlation
differs only slightly from the convolu-
tion; it’s useful for finding the degree
of similarity in signal patterns from
two different data streams and in de-
termining the lead or lag between
such similar signals. Autocorrelation
is also related to the convolution; it’s
described later. Windowing, used in
extracting or smoothing data, is typi-
cally executed by multiplying time-
domain data or its autocorrelation
function by the window function. A
disadvantage of windowing is that it
alters or restricts the data, which, of
course, has consequences for the spec-
tral estimate. In this installment, we
continue our discussion, building on
these concepts with a more general
approach to computing spectrum es-
timates via the FFT.

Spectrum Estimation’s
Central Problem 
The periodogram, invented by
Arthur Schuster in 1898,3 was the
first formal estimator for a time se-
ries’s frequency spectrum, but many
others have emerged in the ensuing
century. Almost all use the FFT in
their calculations, but they differ in
their assumptions about the missing
data; that is, the data outside the ob-
servation window. These assumptions
have profound effects on the spectral
estimates. Let t be time, f be fre-
quency, and x(t) a real function on the
interval –� < t < �. The continuous
Fourier transform (CFT) of x(t) is de-
fined by 

,

–� � f � �, (1)

where . If we knew x(t) per-
fectly and could compute Equation 1,
then we could compute an energy
spectral density function

E(f ) = |X(f )|2,  –� � f � �, (2)

and a power spectral density function
(PSD) by

–� � f � �. (3)

But we have only a discrete, real time
series

xj = x(tj), with tj = j�t,
j = 0, 1, …, N – 1, (4)

defined on a finite time interval of
length N�t. We saw in Part I1 that
sampling x(t) with sample spacing �t
confined our spectral estimates to the
Nyquist band 0 � f � 1/2�t. We used
the FFT algorithm to compute the dis-
crete Fourier transform (DFT)

k = 0, 1, …, N/2, (5)

which approximates the CFT X(f ) at
the Fourier frequencies 

, k = 0, 1, ..., N/2. (6)

We then computed periodogram esti-
mates of both the PSD and the ampli-
tude spectrum by

, k = 0, 1, …, N/2,

, k = 0, 1, …, N/2. (7)

We also saw that we could approximate
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the CFT and the frequency spectrum
on a denser frequency mesh simply by
appending zeroes to the time series.
This practice, called zero padding, is
just an explicit assertion of an implicit
assumption of the periodogram
method—namely, that the time series
is zero outside the observation window.
Frequency spectrum estimation is a
classic underdetermined problem be-
cause we need to estimate the spectrum
at an infinite number of frequencies us-
ing only a finite amount of data. This
problem has many solutions, differing
mainly in what they assume about the
missing data. 

Before considering other solutions
to this problem, let’s reconsider one of
the examples from Part I1 (specifically,
Figure 1b), but make it more realistic
by simulating some random measure-
ment errors. More precisely, we take
N = 32, �t = 0.22, and consider the
time series 

tj = j�t, j = 0, 1, 2, …, N – 1, 

xj = x(tj) = sin[2�f0(tj + 0.25)] + �j, (8)

with f0 = 0.5, and each �j a random
number drawn independently from a
normal distribution with mean zero
and standard deviation � = 0.25. This
new time series is plotted together
with the original uncorrupted series in
Figure 1a. Both series were zero
padded to length 1,024 (992 zeroes
appended) to obtain the periodogram
estimates given in Figure 1b. It’s re-
markable how well the two spectra
agree, even though the noise’s stan-
dard deviation was 25 percent of the
signal’s amplitude.

The Autocorrelation Function 
After the periodogram, the next fre-
quency spectrum estimators to emerge
were Richard Blackman and John

Tukey’s correlogram estimators.4

They’re based on the autocorrelation
theorem (sometimes called Wiener’s
theorem), which states that if X(f ) is
the CFT of x(t), then |X(f )|2 is the
CFT of the autocorrelation function
(ACF) of x(t). Norbert Wiener defined
the latter function as5

,

–� < � < �, (9)

in which the variable � is called the lag
(the time interval for the correlation of
x(t) with itself), and x*(t) is the com-
plex conjugate of x(t). Thus, if we
could access x(t), we could compute
the PSD in two ways: either by Equa-
tion 3 or by 

. (10)

But again, we have access to only a
noisy time series x0, x1, …, xN–1, so to
use the second method, we need esti-
mates for �(�) evaluated at the discrete
lag values 

�m = m�t,  m = 0, 1, …, N – 1. (11)

Because we’re working with a real time
series, and �(�–m) = �(�m), we don’t need
to worry about evaluating �(�) at neg-
ative lags. 

Because �(�) is a limit of the average
value of x* (t)x(t + �) on the interval
[–T, T ], the obvious estimator is the
sequence of average values

,

m = 0, 1, …, N – 1. (12)

This sequence is sometimes called the
unbiased estimator of �(�) because its
expected value is the true value—that
is, �{ �̂(m�t)} = �(m�t). But the data
are noisy, and for successively larger
values of m, the average �̂m is based on
fewer and fewer terms, so the variance
grows and, for large m, the estimator
becomes unstable. Therefore, it’s
common practice to use the biased
estimator 
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the two times series plotted in (a). For the noise-corrupted series, the peak is
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,

m = 0, 1, …, N – 1, (13)

which damps those instabilities and has
a smaller total error (bias + variance)
than does the unbiased estimator. (Bias
is the difference between the estimator’s
expected value and the true value of the
quantity being estimated.) Figure 2a
gives plots of both estimates for the
times series that Equation 8 defines. 

The ACF we have just described is
sometimes called the engineering auto-
correlation to distinguish it from the
statistical autocorrelation, which is de-
fined by 

,

where . (14)

The individual r̂m are true correlation
coefficients because they satisfy

–1 � r̂m � 1, m = 0, 1, …, N – 1. (15) 

Correlogram PSD Estimators 
Once we’ve established the ACF esti-
mate, we can use the FFT to calculate
the discrete estimate to the PSD. More
precisely, the ACF estimate is zero
padded to have M lags, which gives
M/2 + 1 frequencies in the PSD esti-
mate, which we can then compute by
approximating Equation 10 with

,

k = 0, 1, …, M/2. (16)

Zero padding in this case is an explicit
expression of the implicit assumption
that the ACF is zero for all lag values
� > (N – 1)�t. We must assume that
because we don’t know the data out-
side the observation window. Assum-
ing some nonzero extension for the
ACF would amount to an implicit
assumption about the missing ob-
served data. 

Figure 2b plots the correlograms

corresponding to the biased and un-
biased ACF estimates, shown in Fig-
ure 2a. The negative sidelobes for the
unbiased correlogram show dramati-
cally why most analysts choose the bi-
ased estimate even though its central
peak is broader. The reason for this
broadening, and for the damped side-
lobes, is that the biased ACF, Equa-
tion 13, can also be computed by
multiplying the unbiased ACF, Equa-
tion 12, by the triangular (Bartlett) ta-
pering window 

, 

k = 0, 1, 2, …, N – 1. (17)

Recall that we observed the same sort
of peak broadening and sidelobe sup-
pression in Part I’s Figure 10 when we
multiplied the observed data by a
Blackman window before computing
the periodogram. 

Notice that the biased correlogram
estimate plotted in Figure 2b is identi-
cal to the periodogram estimate plot-
ted in Figure 1b. The equality of these
two estimates, computed in very dif-
ferent ways, constitutes a finite dimen-
sional analogue of Wiener’s theorem
for the continuous PSD. 

Figure 2b’s two PSD correlograms
aren’t the only members of the class of
correlogram estimates. We can obtain
other variations by truncating the ACF
estimate at lags � < (N – 1)�t and by
smoothing the truncated (or untrun-
cated) estimate with one of the taper-
ing windows defined in Part I’s
Equation 11. Most of those windows
were originally developed for the cor-
relogram method; they were then
retroactively applied to the perio-
dogram method when the latter was
resurrected in the mid 1960s. In those
days, people often used very severe
truncations, with the estimates being
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Figure 2. Autocorrelation and correlogram estimates for the noisy time series
defined by Equation 8. (a) Biased and unbiased estimates of the autocorrelation
function (ACF); (b) correlogram estimates obtained from the ACF estimates in (a). 
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set to zero at 90 percent or more of the
lags. Not only did this alleviate the
variance instability problem, but it also
reduced the computing time—an im-
portant consideration before the in-
vention of the FFT algorithm, and
when computers were much slower
than today. 

The effect of truncating the biased
ACF estimate is shown in Figure 3,
where mmax is the largest index for
which the nonzero ACF estimate is re-
tained. More precisely, 

(18)

It’s clear that smaller values of mmax
produce more pronounced sidelobes
and broader central peaks than larger
values. The peak broadening is ac-
companied by a compensating de-
crease in height to keep the area under
the curve invariant. PSD is measured
in units of power-per-unit-frequency
interval, so the peak’s area indicates its
associated power.

Figure 4 shows the effect of tapering
the truncated ACF estimates used in
Figure 3 with a Hamming window 

,

m = 0, 1, 2, …, mmax. (19)

The sidelobes are suppressed by the ta-
pering, but the central peaks are fur-
ther broadened. This loss in resolution
is the price we must pay to smooth the
sidelobes and eliminate their negative
excursions. 

Tapering the biased ACF estimates
with the Hamming window amounts
to twice tapering the unbiased esti-
mates; we can obtain the former from
the latter by tapering them with the

Bartlett window, Equation 17. Figure
5 shows the effect of a single tapering
of the unbaised estimates with the

Hamming window, Equation 19.
Note that the sidelobes are not com-
pletely suppressed, but they’re not as
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Figure 3. Three correlogram estimates for Equation 8 computed from the biased
autocorrelation function (ACF) estimator in Equation 13. The periodogram,
although plotted,  doesn’t show up as a separate curve because it’s identical to the
mmax = 31 correlogram. 
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Figure 4. Three correlogram estimates for the time series generated by Equation 8.
We computed the estimates by tapering three truncations of the biased estimator in
Equation 13 with a Hamming window. The periodogram was also plotted for
comparison. Although it has sidelobes, its central peak is sharper than those of the
correlograms.
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pronounced as in Figure 3, in which
the tapering used the Bartlett win-
dow. However, the central peaks are
also slightly broader here. This is yet
another example of the trade-off
between resolution and sidelobe
suppression.

This particular example contains
only a single-sinusoid, so it doesn’t
suggest any advantage for the taper-
ing and truncation procedures, but
they weren’t developed to analyze a
time series with such a simple struc-
ture. Their advantages are said to be
best realized when the signal being
analyzed contains two or more sinu-
soids with frequencies so closely
spaced that sidelobes from two adja-
cent peaks might combine and rein-
force one another to give a spurious
peak in the spectrum. But of course, if
two adjacent frequencies are close
enough, then the broadening of both
peaks might cause them to merge into
an unresolved lump. 

M uch ink has been used in de-
bating the relative merits of the

various truncation and windowing
strategies, but none of them have
proven to be advantageous, so correlo-
gram estimates are beginning to fall
out of favor. For the past 30 years or so,
most researchers  have concentrated on
autoregressive spectral estimates,
which, as we shall see in Part 4, give
better resolution because they make
better assumptions about the the data
outside the window of observation.
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recent article of this series,1 we considered the peri-
odogram and correlogram estimators for the power spec-
tral density (PSD) function. However, they are only two of
several possibilities. 

In this installment, we consider two additional kinds of
spectrum estimates: autoregressive (AR) estimates and the
maximum entropy (ME) method. In the first approach, we
assume that an AR process generates the time series,
which means we can compute the PSD of the time series
from estimates of the AR parameters. The second ap-
proach is a special case of the first, but it uses a different
method for estimating the AR parameters. Specifically, it
chooses them to make the PSD’s inverse transform com-
patible with the measured time series, while remaining
maximally noncommittal about the data outside the ob-
servational window.

Autoregressive Time-Series Models
Both the periodogram and correlogram estimates make
rather unrealistic assumptions about the data outside the
observational window. Moreover, when they use tapering
windows or truncation of the autocorrelation function
(ACF), they change the observed data. The years since the
early 1970s have seen the development of a new class of
PSD estimators that are based on the idea of fitting a para-
metric time-series model to the observed data. This en-
ables us to use estimates of the parameters in the
theoretical expression of the model’s PSD to get an esti-
mate of the observed series’ PSD. If the model is a good
representation of the process that generated the data, it
should hopefully give a more realistic extrapolation for the
missing data.

The class of models used most often assumes that the data

are generated by an AR process in which each new data
point is formed from a linear combination of the preceding
data plus a random shock. The basic idea is that a system’s
future states depend in a deterministic way on previous
states, but at each time step, a random perturbation drives
the system forward. We can write the AR models of orders
1, 2, and 3 as

AR(1): xn = –a1xn–1 + un, n = 1, 2, …, N – 1,
AR(2): xn = –a1xn–1 – a2xn–2 + un, n = 2, 3, …, N – 1,
AR(3): xn = –a1xn–1 – a2xn–2 – 

a3xn–3 + un, n = 3, 4, …, N – 1, (1)

where a1, a2, and a3 are the AR parameters (whose values
must be determined to make the model fit the data), and
un is the random shock at time step n. We assume the ran-
dom shocks to be samples from a zero-mean distribution
whose variance remains constant in time. The choice of
negative signs for the parameters is a universal convention
adopted for notational convenience in derivations that we
won’t give here.

Autoregressive Spectral Estimates
In general, for any integer p < N – 1, the AR( p) model is
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, n = p,  p + 1, …, N – 1. (2)

We can show that the PSD function for this model is

(3)

where �w is another adjustable parameter that we can esti-
mate along with a1, a2, …, ap by solving the ( p + 1) � ( p + 1)
linear system of equations,

(4)

which are sometimes called the Yule-Walker equations. The
�-values in the matrix are just the autocorrelations �k = �(�k)
= �(k�t) that we defined in the last issue1 with

, (5)

where x* is the complex conjugate of x(t). We’re working
with real data, so �–k = �k, which means that the matrix is

symmetric and positive definite. Note that the element in
row i and column j is just �(i–j), which makes it a Toeplitz ma-
trix. Norman Levinson2 exploited this special structure to
devise a recursive algorithm that solves the system in times
proportional to (p + 1)2 rather than the (p + 1)3 required by
a general linear equations solver.

We can summarize the steps required to compute an au-
toregressive spectral estimate as follows:

1. Choose an autoregressive order p � N – 1.
2. Compute ACF estimates �̂0, �̂1, …, �̂p using the biased

estimator 

m = 0, 1, …, N – 1. (6)

3. Substitute �̂0,  �̂1, …,  �̂p into the matrix in Equation 4
and use the Levinson algorithm to compute estimates   
â1, â2, …, âp and  �̂w.

4. Substitute â1, â2, …, âp and  �̂w into Equation 3 to
compute the PSD estimate P̂AR(f ) on any desired fre-
quency mesh.

It’s absolutely necessary to use the biased ACF estimator in
step 2. Using the unbiased estimator produces an unstable
linear system (see Equation 4) with a matrix that numerically
isn’t positive definite.

It’s easy to do the calculations in the final step by using the
fast Fourier transform (FFT) algorithm to compute the de-
nominator in Equation 3. If we define â0 � 1, then

(7)

Suppose we want to evaluate PAR( f ) at (M/2 + 1) equally
spaced frequencies

, k = 0, 1, …, M/2, (8)

where M > p. Then, 

(9)

and we can compute these values quite quickly by zero
padding the sequence â0,  â1,  â2, …,  âp to have M terms and
applying the FFT algorithm.
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Figure 1. The time series generated by Equation 10 and its
periodogram. The discrete points in the upper plot are joined
by straight-line segments to emphasize the time series nature
of the data. The time series was zero padded to length M =
1,024 to compute the periodogram in the lower plot. 
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Two Examples
If we choose the AR order p properly, the peaks in the AR( p)
spectrum will be sharper than those in the periodogram or
correlogram estimates. There is no clear-cut prescription
for choosing p, but a fairly wide range of values will usually
give acceptable results. To illustrate the effect of the choice
of p, let’s revisit an example time series used in the last issue.1

Again, we’ll take N = 32, �t = 0.22, and consider the time se-
ries generated by

tj = j�t,    j = 0, 1, 2, …, N – 1,
xj = x(tj) = sin[2�f0(tj + 0.25)] + �j, (10)

with f0 = 0.5, and each �j a random number drawn indepen-
dently from a normal distribution with mean zero and stan-
dard deviation � = 0.25. Figure 1 plots the time series and
its periodogram, and Figure 2 gives three different AR( p)
spectra for the time series, together with the periodogram
for comparison. Table 1 gives the locations of the peak cen-
ters. Both the AR(16) and AR(24) estimates give better re-
sults than the periodogram, but for real-world problems, it’s
best to try several orders in the range N/2 � p � 3N/4 and
compare them to make the final choice. Our own experience
has indicated that the best choice usually has p � 2N/3.

To better illustrate the AR methods’ power, let’s recon-
sider another time series originally introduced in Part I of
our series (specifically, Figure 2a).3 We generated it by sum-
ming two sine waves, with amplitudes A1 = A2 = 1.0, fre-
quencies f1 = 1.0 and f2 = 1.3, and phases �1 = �2 = 0, at N =
16 equally spaced time points with �t = 0.125. Again, we add
random noise to make the problem more realistic, and write

tj = j�t,     j = 0, 1, …, N – 1,
xj = sin[2�f1tj] + sin[2�f2tj] + �j, (11)

with the �j chosen independently from a normal distribution;
the mean is 0 and standard deviation � = 0.25. This is the
same error distribution in the preceding example, but the
samples used here differ from any used there. The top graph
of Figure 3 gives plots of the noisy and noise-free time se-
ries, and the bottom graph gives their periodograms. Figure
4 gives plots of the PSD’s periodogram and AR(12) esti-
mates. The latter clearly indicates the presence of two peaks,
although it doesn’t completely resolve them. The two max-
ima occur at frequencies very near the true values used to
generate the time series. It’s remarkable that the AR(12) es-
timate could obtain such good agreement with the true val-
ues using only 16 noise-corrupted data points.
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Figure 2. AR(p) power spectral density (PSD) estimates. For 
p = 8, 16, and 24, and the periodogram for the time series
generated by Equation 10, the plot doesn’t cover the whole
Nyquist band 0 � f � 2.273, but rather only the frequency
range spanned by the central peak in the periodogram. Using
the whole Nyquist range renders the AR(p) peaks so narrow
that it’s difficult to distinguish between them.

Estimate Periodogram AR(8) AR(16) AR(24)
�
f0 0.493 0.491 0.495 0.504

Table 1. Peak centers.
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Figure 3. Time series. In (a) the noise-corrupted time series
generated by Equation 11, the noise is independently and
identically distributed n(0, 0.25). (b) Periodograms of the two
time series plotted in (a). In neither case was the periodogram
method able to resolve two separate peaks. For the noisy
spectrum, the unresolved lump peaks at frequency f

�
= 1.136.
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The Maximum Entropy Approach
John Parker Burg invented the ME method in the late
1960s; he exhibited its strengths and advantages in oral pre-
sentations at geophysics conferences, but he didn’t publish
the mathematical derivations that defined and justified it un-
til his PhD thesis4 appeared in 1975. This lack of published
documentation produced a great deal of independent work
by other researchers who were trying to understand and ex-
tend the method. In fact, the ME method was one of the
chief motivators for the development of the AR methods and
can be classified as an AR method itself, although Burg
didn’t use AR models in its development.

Rather, Burg started with the definition for PSD, that is, 

, (12)

but sought a function Pe( f ), defined on the Nyquist band
–1/(2�t) � f � 1/(2�t), which satisfied three guiding principles:

1. The inverse Fourier transform of Pe( f ) should return
the autocorrelation function unchanged by any filter-
ing or tapering operations:

m = 0, 1, …, N – 1. (13)
2. Pe( f ) should correspond to the most random or unpre-

dictable time series whose autocorrelation function
agrees with the known values.

3. Pe( f ) > 0 on the interval –1/(2�t) � f � 1/(2�t).

The first condition merely states that the measured data
shouldn’t be changed in any way in computing Pe( f ). The

second is a statement about what is to be assumed about the
data outside the observational window. Essentially, it says
that those assumptions should be minimized.

To measure a time series’ randomness or unpredictability,
Burg used the information theoretic concept of entropy. A
random process

… x(–2�t), x(–�t), x(0), x(�t), x(2�t), … (14)

is said to be band limited if its PSD function is zero everywhere
outside its Nyquist band. If P( f ) is such a PSD function, then
the time series’ entropy rate (entropy per sample) is given by 

(15)

Burg’s idea was to maximize this quantity, subject to the
constraints imposed by Equation 13. More precisely, he
sought to impose the constraint at lags 0, �t, 2�t, …, p�t,
with p < N and then choose from the set of all nonnegative
functions P( f ) that satisfy those p + 1 constraints the partic-
ular one that minimizes the entropy rate (Equation 15). We
can write the problem formally as

(16)

We need techniques from the calculus of variations to solve
it; we can show that

, (17)

where a1, a2, …, ap and �e are parameters satisfying

(18)
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Figure 4. Power spectral density (PSD). The AR(12) and the
untapered periodogram estimates of the PSD for time series
generated by Equation 11. The two maxima in the AR(12)
spectrum occur at frequencies f

�

1 = 1.027 and f
�

2 = 1.321, which
are very near the true values f1 = 1.00 and f2 = 1.30.
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Equation 17 is the same as Equation 3, and, because we’re
working with real data for which �–k = �k, Equation 18 is the
same as Equation 4. Thus, the maximum entropy method is
correctly classified as an AR method, even though Burg used
different methods to estimate the autorcorrelations and pa-
rameters in Equation 18.

Forward and Backward Prediction Filters
Burg regarded the vector (1  a1 a2 … ap)T as a prediction
filter, which he applied to the data x0, x1, …, xN–1 in both the
forward and reverse directions to get forward and backward
predictions  x̂ f

n,   x̂ b
n and their corresponding prediction er-

rors e f
n, eb

n: 

(19)

He reasoned that he could get the best estimates for a1, a2,
…, ap by minimizing the sum of squares of the predictions’
errors, for example, 

. (20)

He was able to devise a recursive algorithm that gave esti-
mates not only for a1, a2, …, ap, but also, at the same time,
for �e and for the autocorrelations �0, �1, …, �p. The de-
tails are complicated, so we won’t give them here.4 It’s re-
markable that the recursion generates a new estimator for
the elements of the matrix in Equation 18 at the same time
it’s solving the system of equations!

Choosing the Order p
Like the other AR methods, the ME method requires the
choice of an order p < N. Figure 5 exhibits the results of
choosing a low, intermediate, and high order for the time se-
ries generated by Equation 10. The same plots are repeated
using a logarithmic scaling in Figure 6. Table 2 gives the peak
locations. The ME(3) spectrum gave the best estimate  ̂f0, but
its peak is almost as broad as the periodogram. Increasing p
produces sharper peaks, but the locations display a noticeable
downward bias. The ME(14) estimate is fairly representative
of the orders in the range 4 � p � 25. At p = 26, the peak splits
into two, with the dominant one giving a better  ̂f0 than any of
the sharp single peaks for p = 4, 5, …, 25. The same splitting

occurs for orders p = 27, 28, 29, and 30, with the dominant
peak becoming sharper and sharper but remaining at  f̂0 =
0.492. These spurious splittings aren’t caused by errors in
the data. In fact, they occur much more readily for artificially

e en
f

n p

N

n
b

n

N p21 2

0

1

=

−

=

− −

∑ ∑+

ˆ , ˆ , , , ,x a x e x x n p p Nn
f

k n k
k

p

n
f

n n
f= − = − = + −−

=
∑

1
1 … 11

0 1
1

ˆ , ˆ , , , ,x a x e x x n Nn
b

k n k
k

p

n
b

n n
b= − = − = −+

=
∑ … pp −1.

P M
E
(f

)

100

90

80

70

60

50

40

30

20

10

0

p = 3
p = 14
p = 26
Periodogram

0.36 0.40 0.44 0.48 0.52 0.56 0.60 0.64
f

Figure 5. Maximum entropy power spectral density (PSD)
estimates. For orders p = 3, 14, and 26, and the periodogram
for the time series generated by Equation 10, we see plots
along the same frequency range used for the AR(p) spectra in
Figure 2. The ME peaks are even sharper than the AR(p) peaks,
so they must be taller to preserve the area subtended. 

Estimate Periodogram ME(3) ME(14) ME(26)

f
�

0 0.493 0.498 0.479 0.492

Table 2. Peak locations.
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Figure 6. Another view of the plots given in Figure 5. Using the
logarithm scale makes it easier to compare the ME(3) estimate
with the periodogram.
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generated time series without added noise, but the ME(26)
spectrum clearly demonstrates that they also occur in noisy
data, so great care must be exercised in interpreting high-
order ME spectra. One of the ME method’s strengths is its
ability to resolve closely spaced peaks, but in using it for that
purpose, always remember the possibility of a spurious split-
ting of a single peak.

Researchers have proposed several criteria for choosing
the optimal order for the ME method (and for the other AR
methods), but none of them work all of the time. In fact, it’s
easier to find a time series that confounds a given criterion
than it is to develop it. Many authors5,6 recommend p � N/2,
but higher order methods often give better results. Figure 7
shows the result of using a relatively high p for the time se-
ries generated by Equation 11. The very narrow spurious
peak at  f̂ = 2.901 is a typical occurrence when we use high
values for p. Such peaks can usually be easily identified be-
cause they’re so much sharper than the peaks correspond-
ing to real power. The one in Figure 7 is a small price to pay
for the excellent resolution of the two real peaks. It’s amaz-
ing that the ME method can achieve such good results us-
ing just 16 noisy data points spanning only � 2.5 cycles of
the higher frequency sine wave.

W e’ve now looked at four different methods of spec-
trum estimation, and although we haven’t ex-

hausted the subject, we must proceed. (More details about
this topic appear elsewhere.5,6) In the next installment, we’ll

take a brief look at filters and detrending before we present
an analysis of a bat chirp. In the final installment, we’ll dis-
cuss some statistical tests and use them to analyze atmos-
pheric pressure differences in the Pacific Ocean that have
significant environmental implications.
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ideas associated with the transform process itself. In case
you’re just tuning in, part one provided an introduction
to the concepts associated with the FFT process,1 part
two treated convolutions,2 part three provided a discus-
sion of classical spectral analysis,3 and part four contin-
ued that discussion, presenting autoregressive spectral
analysis and the maximum entropy method.4 Part six will
analyze a bat chirp.

This current segment discusses filters. Filtering implies
a frequency-dependent selection process, passing, for ex-
ample, frequencies within a certain range and rejecting
those outside that range. Later, I’ll describe some essen-
tials for creating frequency-dependent passbands and stop-
bands. I’ll also briefly cover detrending and the cumulative
periodogram. 

Filters
Raw data is rarely in an ideal form for analysis. To separate
the desired signal from the data, filtering can provide much
assistance. With digital techniques, we can construct a wide
variety of filter types, including low-pass, high-pass, band-
pass, and notch filters. The typical approach for imple-
menting a nonrecursive filter is to convolve2 the input signal
with the filter’s impulse response.

Figure 1 summarizes the interrelations between the in-
put signal, filter impulse response, and transform
processes, where y(t) is the signal to be filtered, Y(f ) is
the Fourier transform of y(t), h(t) is the filter’s impulse
response function (also referred to as the filter kernel),
H(f ) is the filter’s transfer function or frequency re-
sponse, z(t) is the filtered signal, and Z(f ) is the Fourier
transform of z(t). The interrelations shown in Figure 1
are equivalent to the interrelations between time and fre-

quency domain operations that lead to convolution (see
Figure 4 of part two2). 

One pathway to determine a filter’s impulse response is
to start with the desired frequency response and take the
inverse transform to find the filter kernel. Conversely, the
FFT of any impulse response yields that filter’s frequency
response. If we consider the sinc function to be the im-
pulse response

then taking this function’s FFT yields a low-pass filter’s
transfer function (see Figure 2). Although the ideal low-
pass filter would have a discontinuity—passing with unity
gain all signals below the cutoff frequency and zero gain for
all signals above the cutoff—such performance isn’t achiev-
able in practice. A transition region as well as a ripple will
always exist. In this example, we write the sinc function
with arguments as

where fco is the arbitrarily selected cutoff frequency—here,
35 Hz and where 

The use of a modified sinc function changes the filter
from low pass to high pass, a process referred to as spectral
inversion. This inversion reverses the filters’ frequency re-
sponse, changing passbands to stopbands and vice versa.
The modified function5 with the arguments used in this
example is
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Figure 3 shows the function and its transform.
As an example of low-pass filtering, let’s consider two

signals, each composed of two sine waves with different
frequencies. Each signal has a 5-Hz component and a sec-
ond frequency either just above (36 Hz) or just below (34
Hz) the filter’s cutoff frequency (35 Hz). The signals are
defined by

y1i = sin(2� � 5 � ti) + sin(2� � 34 � ti)
y2i = sin(2� � 5 � ti) + sin(2� � 36 � ti)

ti = i � dt,

and N and � t are as specified earlier. Figure 4 shows sig-
nals before filtering, and Figure 5 shows filter characteris-
tics in the transition region.

The filtered signals in Figure 6 (p. 95) are determined
by taking the inverse FFT (IFFT) of the element-by-ele-
ment product of the signals’ FFT, defined earlier, and the
filter kernel’s FFT, which in this low-pass filter case is the
sinc function. Filter operation is easily understood. In the
pass region, the signal’s FFT is multiplied by numbers
with a magnitude close to one, whereas in the non-pass re-
gion, the signal’s FFT is multiplied by numbers with a
magnitude close to zero. The inverse transform then re-
constructs a signal based on the frequency components
that remain.

A band-pass filter (see Figure 7) is created from a combi-
nation of a low-pass filter and a high-pass filter, where the
low-pass filter cutoff’s frequency is greater than the high-
pass filter’s cutoff frequency. A pseudocode expression for a
band-pass filter, in which a smoothing window is applied,
looks like this: 

.

The vectorize arrow implies element-by-element multipli-
cation and the lowpassfcn and highpassfcn are the correspond-
ing filter kernels with selected transition frequencies. In
Figure 7, we use a Blackman window to reduce the ringing.
Recall that the Blackman window is defined1 as 

.

Two other windows commonly used in filtering are the
Kaiser and the Chebyshev. As noted previously,1 two per-
formance factors for windows are the full-width half-max-
imum of the central lobe and the relative size of the side
lobes. From narrowest to broadest central lobes, the win-
dow order is rectangular, Kaiser, Chebyshev, and Black-
man, but the order is reversed from smallest to largest for
the side lobes.

A moving average filter, depicted in Figure 8, helps remove
noise by replacing each point’s magnitude with the average
value of itself and its neighbors—we would give a five-point
moving average for the 12th data point, for example, by x(12)
= [x(10) + x(11) + x(12) + x(13) + x(14)]/5. Performing such a

w i N i Ni = − ⋅ + ⋅ ( )0 42 0 5 2 0 08 4. . cos( ) . cosπ π
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otherwise.

Input signal y(t)

Convolve with impulse
response h(t)

Filtered signal z(t)

FT

IFT

IFT

Y(f )

Multiply by transfer
function H(f )

Z(f )

Figure 1. Time and frequency domain operations that lead
to filtering. The filtered signal is obtained by convolving
the input signal with the impulse response or by
multiplying the Fourier transforms (FTs) of the input signal
and the impulse response followed by an inverse Fourier
transform (IFT). 
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Figure 2. The sinc function and its Fourier transform. (a)
The sinc function is considered here as an impulse
response; (b) a fast Fourier transform (FFT) of the sinc
function yields the filter’s transfer function.
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filtering process has the effect of reducing the slope of any
edges that might be present. The filtering can be achieved by
convolving a rectangular window, symmetrically placed with
equal contributions at the beginning and end of the window,
with the data set. (To take an average with an equal number
of points above and below the point of interest, the window
should be symmetric about zero, which means that for an av-
erage taken over five data points, win(0), win(1), win(2),
win(N–1), and win(N–2) should be set to one-fifth with all
the other points being set to zero.) If the rectangular window
isn’t symmetrically placed, the output signal will shift rela-
tive to the input signal.

Detrending and the Cumulative Periodogram
Although space limits discussion of detrending and the cu-
mulative periodogram in this issue, a few comments are ap-
propriate. Detrending is the process of removing an
undesired trend in a time series. Time-domain data is typ-
ically obtained while eavesdropping on an ongoing
process. During this sampled time, some signals could have
such sufficiently low frequencies that their period is much
greater than the sampling time. The FFT can’t recognize
such low-frequency signals—for example, if the signal in-
cludes a sine function in which the time span includes only
a small fraction of a cycle, the FFT won’t indicate such a
frequency. (It’s difficult to say precisely what fraction of a
sine wave is needed before the FFT gives a clear indication
of such a frequency; two-thirds of a cycle is probably
enough to render it visible whereas one-half cycle is not.).
If such a signal has a relatively large amplitude, it can mask
the signals that are of interest. There could also be non-
cyclical trends in the data. Furthermore, during the sam-
pling time, there could be some drift in the instruments
recording the measurements. Any of these effects can mask
the signals you could be hoping to see, and, if possible,
such trends should be removed (by least squares or other
methods) before performing any planned analysis.

The cumulative periodogram provides an approach to
statistically testing the validity of a signal’s spectral fea-
tures. It does this by providing a mechanism to test
whether a peak at a particular frequency shows a statisti-
cally significant departure from white noise. The cumu-
lative periodogram sums the normalized elements of the
periodogram up to the index of interest. When plotted,
the cumulative periodogram shows the running sum.
Peaks in a periodogram produce deviations from the path
associated with white noise in a cumulative periodogram.
To observe this, we choose a probability level to demar-
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Figure 3. The modified sinc function and its Fourier
transform. (a) The modified sinc function acts as a high-
pass filter’s impulse response. (b) The transform shows the
transfer function—here, with a cutoff frequency of 35 Hz.
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Figure 4. Signals before filtering. The upper curve includes
the frequencies of 5 and 34 Hz, and the lower curve includes
the frequencies 5 and 36 Hz. Curves are offset for visibility. 
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Figure 5. Filter response in the transition region. The pass
amplitude of the filter at the cutoff frequency of 35 Hz
(circular marker) is approximately half the amplitude in
the pass band. The box markers show where on the
transfer curve the 34 and 36 Hz points occur. 
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cate a confidence band for white noise and plot the lines
indicating that confidence level together with the cumu-
lative periodogram of interest.

L ooking ahead, in part six, I will analyze a bat chirp. One
aspect of such a chirp that makes it interesting to con-

sider is the fact that the times series represents a non-sta-
tionary signal, in which both the signal’s frequency structure
and the amplitudes of the various frequency components vary
in time.
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Figure 6. Signals after low-pass filtering (the cutoff
frequency is 35 Hz). The upper curve includes the
frequencies of 5 and 34 Hz, and the low curve includes the
frequencies of 5 Hz and a significantly reduced amplitude
36 Hz signal (see Figure 4).
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Figure 7. Band-pass filter response (curve with ringing)
and the same filter with the smoothing of a Blackman
window. There is a slight reduction in the rate of roll-off
when a window is applied. The low-pass cutoff frequency
is 65 Hz; the high-pass cutoff frequency is 55 Hz.
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Figure 8. Noise reduction using a moving average filter
with a seven-point average. For visual clarity, the signals
are offset. 
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